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FORCE ACTION OF A SHOCK WAVE ON A SOLID BODY

UDC 533.6.011.72B. I. Zaslavskii,∗ V. R. Shlegel’, S. Yu. Morozkin, and N. N. Denisov

Approximate engineering methods for determining the forces acting on solid bodies upon interaction
with shock waves are proposed. These methods are verified experimentally with the use of a shock
tube. The forces acting on bodies are measured by fast-response acceleration transducers. Good
correspondence between measurement data and calculation results obtained by exact and approximate
methods is observed.

1. Let a plane shock wave (SW) be incident on a body of arbitrary shape (Fig. 1). We introduce the
coordinate system (x, y) in such a manner that the Ox axis coincides with the direction of SW propagation and
the coordinate origin is located at the point where the shock-wave front contacts with the body (at any point on
the contact line for a cylindrical body). The total surface force F acting from the side of the flow on the surface of
the body is given by

F = −
∮
Sm

pn dS = Fxi+ Fyk
(
Fx = −

∮
Sm

pnx dS, Fy = −
∮
Sm

pny dS
)
.

Here p is the pressure, n = (nx, ny) is the unit normal to the surface of the body, Sm is the area of the body
surface, Fx and Fy are, respectively, the “drag” and “lifting” components of the force F , and i and k are the unit
vectors directed along the Ox and Oy axes, respectively. It is clear that Fy = 0 for bodies with a symmetry plane
perpendicular to the plane of the shock wavefront.

In the problems of reflection of SWs of relatively low and moderate intensities from arbitrarily shaped bodies,
the pressure behind the front of the reflected wave can be estimated by methods of the theory of geometrical
acoustics, according to which the damping of shock and reflected waves is determined by the ratio between the
cross-sectional areas of elementary ray tubes [1].

Let a reflected SW propagate in a gas with the initial pressure p1 (p1 is the pressure behind the front of the
incident SW). The pressure pf (r) behind the element of the shock wavefront reflected from the point r0 ∈ Sm and
located at the point r at the moment t is related to the pressure pf (r0) at the point r0 at the moment of reflection
by the damping law [1]

pf (r)− p1 =
[ R1R2

(R1 +Nrt)(R2 +Nrt)

]1/2
[pf (r0)− p1].

Here R1 and R2 are the principal radii of curvature of the reflected front at the point r0, Nr is the velocity of
the reflected SW in the coordinate system attached to the body, and the time t is reckoned from the moment of
reflection. In the case where a plane acoustic SW reflects from a cylinder or sphere, this law yields the relation

pf (r)− p1

pf (r0)− p1
=
( R0

R0 +Nrt

)ω
, (1.1)

where R0 is the radius of the cylinder or sphere. We have ω = 0.5 for a cylinder and ω = 1 for a sphere.
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Fig. 1. Scheme of interaction between the shock wave and the solid body.

The laws of the form (1.1) can be used for more complex surfaces if a certain averaged (in the root-mean-
square sense) radius is meant by R0, and the value of ω lies in the interval 0.1 6 ω 6 1. In the case of nonacoustic
SWs where additional damping occurs, the value of ω must be increased. It was found that ω ≈ 0.75 for a cylindrical
body [2], ω ≈ 1.13 for a spherical body, and 0.5 6 ω 6 1.13 for oblong bodies [3].

Bearing in mind the above-mentioned relations and assuming that pf = pn at t = 0 (pn is the pressure of
the reflected SW upon “drag” reflection and the time t is reckoned from the moment the front of the incident SW
contacts with the body), we describe the SW damping by the approximate formula

pf − p1 =
pn − p1

(1 +Nrt/R0)ω
,

(
pn = p1

(2ν + 1)p1 − νp0

p0 + νp1
, ν =

γ − 1
γ + 1

)
. (1.2)

Here p0 is the pressure ahead of the incident SW (pressure of unperturbed air) and γ is Poisson’s adiabatic exponent.
We assume that, in the time interval considered, the averaged pressure on the reflecting surface is given by

pS ≈ pf and, hence, the pS(t) variation is described by a formula similar to (1.2).
For a body in flow, the angle of incidence of the shock front on the solid surface varies continuously: α = α(t)

(Fig. 1). Depending on the angle of incidence, the regular and Mach regimes of reflection can occur [4]. The regular
regime is realized for α > α∗, and the Mach regime for α < α∗, where α∗ = α∗(Γ1) is the minimum angle at
which regular reflection is still possible (the critical angle) [4] and Γ1 = (ρ1 − ρ0)/ρ0 (ρ0 and ρ1 are the densities
of the gas ahead of and behind the front of the incident SW, respectively). The dependence α∗(Γ1) is determined
experimentally in [5, 6].

Zaslavskii and Safarov [6] showed that in the case of relatively weak SWs [ε1 = (p1 − p0)/(γp0) < 0.3–0.5],
the pressure drop at the reflecting surface is given by pS − p0 . 2(p1 − p0) for α > α∗, the pressure pS drops
abruptly for α∗/2 < α < α∗, and pS ≈ p1 for α < α∗/2. It is noteworthy that, for α < α∗ in the case of Mach
reflection beyond the midsection, the SW front is distorted upon SW diffraction to an extent that the front of a
Mach or diffracted SW at the point of its intersection with the surface of the body remains perpendicular to this
surface during the motion. Let tr be the time it takes to reach the angle of incidence: α(tr) = 2α∗/3. Since the
length of the Mach SW is LM � R0 in the range 2α∗/3 < α < α∗, one can assume that the x coordinate of the
line of intersection between the front and the surface S(t) is determined from the formula x = Nit for t < tr and
from the equation

t = tr +
1
Ni

x∫
Nitr

√
1 +

(dy
dx

)2
dx

for t > tr. Here Ni is the velocity of the incident SW and y = y(x) is the equation of the cross-sectional boundary
of the body cut by the xOy plane.

The above relations allows one to determine approximately the pressure pS and the force acting on the
body F by the following method. We divide the surface of the body in flow Sm into two regions: the region Sr
which corresponds to the angles of incidence 2α∗/3 < α < π/2, where regular reflection (α∗ < α < π/2) and
Mach reflection (2α∗/3 < α < α∗) occur upon interaction of the SW with the body, and the region St, which
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corresponds to the angles of incidence −π/2 < α < 2α∗/3, where Mach reflection (0 < α < 2α∗/3) and SW
diffraction (−π/2 < α < 0) occur.

We assume that the average pressure is determined by the formula

pS = p1 +
pn − p1

(1 +Nrt/R0)ω

on the surface Sr and it is given by pS = p1 on St. For t < tr (as long as the front interacts with Sr), the force Fx
is given by formula

Fx = (pS − p0)Sn(t) =
[
p1 +

pn − p1

(1 +Nrt/R0)ω
− p0

]
Sn(t),

where Sn(t) is the area of section of the body by a plane which passes through the line where the SW contacts with
the surface of the body (Fig. 1). For tr < t < t

∣∣∣
α=−π/2

, we obtain

Fx = (p1 − p0)Sn(t) +
pn − p1

(1 +Nrt/R0)ω
Snr,

where Snr is the area of section of the body by a plane which passes through the boundary separating Sr from St.
Thus, when the shock front moves from the contact point, the “drag” force increases according to the

following laws. Let θ = π/2− α (Fig. 1). Then,

Fx =
[
p1 +

pn − p1

(1 +Nrt/R0)ω
− p0

]
Sn(θ), x = R0(1− cos θ), t = x/Ni (1.3)

for 0 < θ < θr = π/2− 2α∗/3 and

Fx = (p1 − p0)Sn(θ) +
pn − p1

(1 +Nrt/R0)ω
Snr, x = R0(1− cos θ), t = tr +

R0

Ni
(θ − θr) (1.4)

for θr < θ < π (the angles are measured in radians). Here Sn(θ) = 2R0h sin θ for a cylinder of length h and
Sn(θ) = πR2

0 sin2 θ for a sphere.
After the collapse of the shock front, the reflected front of the diffracted SW forms at the rear critical point,

and the pressure in the diffracted front increases by twofold, which leads to the occurrence of the negative phase of
force action.

In calculations, we used the dimensionless variables [7]

Fxn = Fx/(pn − p0)σ, ts = Nit/R0.

Here σ is the area of the body midsection perpendicular to the direction of SW propagation (σ = 2R0h for a cylinder
and σ = πR2

0 for a sphere).
For a weak SW, we have Nr ≈ Ni. In this case, formulas (1.3) and (1.4) written in the above-introduced

dimensionless variables become

Fxn =
1
σ

[ p1 − p0

pn − p0
+
pn − p1

pn − p0
(1 + ts)−ω

]
Sn(ts) (1.5)

for 0 < ts < tsr = 1− cos θr and

Fxn =
1
σ

[ p1 − p0

pn − p0
Sn(ts) +

pn − p1

pn − p0
(1 + ts)−ωSnr

]
(1.6)

for tsr < ts < ts

∣∣∣
θ=π

= tsr + π − θr.
2. Experiments were performed with the use of a UT-4 setup consisted of a shock tube, the means of

visualization and photographing of the wave pattern, the means of measuring forces, pressures, and time intervals,
and the means of automatization of experiment and data processing.

A single-staged diaphragmed shock tube with a 85×125 mm rectangular cross section allowed us to generate
SWs with relative intensities 0.05 < ε1 < 0.7.

Visualization was performed by the schlieren method by means of an optical knife in the focus of a Toepler
device. As light sources, flash lamps were used. Photographing was performed by a waiting time magnifier (the
exposure speed is up to 8 · 106 frames/sec) or a camera.

The SW parameters were measured by piezoelectric pressure gauges located in the walls of a low-pressure
chamber and by a time-interval counter.
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Fig. 2. Toeplerogram of a SW flow around a sphere (Mach-reflection regime).

Fig. 3. The force Fxn versus time for a SW flow around a cylinder (a) and a sphere (b): curves 1 refer
to approximate calculation by formulas (1.5) and (1.6), curves 2 to exact calculation [7], and points to
experiment.

The forces acting on bodies were measured by piezoelectric gauges with an inert mass (accelerometers). The
accelerometer comprised sensors (piezoelectric disks) located between the case (base) of the transducer and the
relatively large inert mass.

The models to be tested were made of a steel in which the velocity of sound (approximately 5700 m/sec)
is more than one order of magnitude greater than the SW velocity (350–430 m/sec). This allowed us to avoid
measurement errors determined by the finite velocity of sound in the material of the model.

After amplification, the signals from the gauges were applied to storage oscilloscopes which were also high-
rate analog-to-digital converters. For final processing, the signals from the oscilloscopes were introduced to a
“Neuron” computer, and the SW and force-vector component parameters were calculated.

The signals from the accelerometers and pressure gauges were subjected to digital and analog processing.
Digital processing was performed with the use of a special program on a “Neuron” computer. An information
needed to determine the force acting on the body (signals from gauges, calibrations of the gauges, and the model
and ambient-atmosphere parameters) was loaded into the computer. For analog processing of the signals, low-
frequency filters with a cut-off frequency of 25 kHz were used. These filters allowed us to suppress completely the
noise caused by excitation of the resonance frequencies of the accelerometers in the range 50–100 kHz.
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3. Using an UT-4 setup, we studied experimentally the action of an SW on solid bodies. Experiments were
performed for a cylinder (the cylinder axis was parallel to the SW front) and a sphere.

Figure 2 shows a photograph of the flow around the sphere visualized by the Toepler device.
Figure 3 shows the dimensionless forces Fxn acting on the cylinder (the length h = 60 mm and the radius

R0 = 22.5 mm) and the sphere versus the dimensionless time ts for the relative SW intensity ε1 = 0.24 (α∗ = 0.7 rad).
Curves 1 were calculated by formulas (1.5) and (1.6). For the cylinder and the sphere, the range of the angles
of incidence 2α∗/3 < α < π/2 corresponds to the angles 0 < θ < 1/12 rad (see Fig. 1) and the coordinate
0 < x/R0 < 0.57. Curves 2 refer to the exact numerical calculation [7]. The calculation results obtained from
formulas (1.5) and (1.6) agree well with exact numerical results [7] and experimental data, which supports the
validity of the initial assumptions used in the derivation of these formulas.
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